Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Wiad Lek ; 76(7): 1677-1680, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37622514

RESUMO

OBJECTIVE: The aim: To identify the main motivational components of improving the healthcare quality in health care providers in Sumy. PATIENTS AND METHODS: Materials and methods: The study involved data obtained from 187 doctors working in primary health care institutions, inpatient and outpatient departments of health care institutions in Sumy, during September-November 2020. The study used systematic, bibliosemantic approaches, comparative and statistical analysis, and logical generalization. The obtained data were processed and statistically analyzed with Google Forms and Microsoft Excel 2010 Windows. RESULTS: Results: The analysis of data received from the surveyed group of respondents showed that 83 doctors (44.39%) have 11-15 years' work experience, 51 people (27.27%) - 6-10 years, 40 people (21.39%) have up to 5 years of work experience and 13 people (6.95%) - more than 15 years. Most doctors (114 people (60.96%)) work for one position, 39 people (20.86%) work for less than one, while 34 people (18.18%) work for more than one position. The number of doctors who indicated that they were mostly overworked during the working day was 123 (65.77%), another 46 (24.60%) indicated that they were overworked during the working day correspondingly to their workload at occupied position, and 18 respondents (9.63%) answered that they were not fully loaded. At the same time, 91.98% of people indicated that the actual amount of their salary does not correspond to the workload, and there is no financial stimulation system for medical care quality increasing (87.70% of responses). CONCLUSION: Conclusions: The study showed that the healthcare facilities where the respondents work do not have an effective system of staff motivation for work quality (79.14% of responses). It was found that doctors are ready to work harder and better for additional pay, despite the high level of workload (88.24% of responses), and consider it necessary to introduce an effective stimulation system to improve the quality of medical services (96.79% of responses).


Assuntos
Motivação , Médicos , Humanos , Pessoal de Saúde , Pacientes Internados , Qualidade da Assistência à Saúde
2.
Molecules ; 26(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917454

RESUMO

The biodegradable metals, including magnesium (Mg), are a convenient alternative to permanent metals but fast uncontrolled corrosion limited wide clinical application. Formation of a barrier coating on Mg alloys could be a successful strategy for the production of a stable external layer that prevents fast corrosion. Our research was aimed to develop an Mg stable oxide coating using plasma electrolytic oxidation (PEO) in silicate-based solutions. 99.9% pure Mg alloy was anodized in electrolytes contained mixtures of sodium silicate and sodium fluoride, calcium hydroxide and sodium hydroxide. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), contact angle (CA), Photoluminescence analysis and immersion tests were performed to assess structural and long-term corrosion properties of the new coating. Biocompatibility and antibacterial potential of the new coating were evaluated using U2OS cell culture and the gram-positive Staphylococcus aureus (S. aureus, strain B 918). PEO provided the formation of a porous oxide layer with relatively high roughness. It was shown that Ca(OH)2 was a crucial compound for oxidation and surface modification of Mg implants, treated with the PEO method. The addition of Ca2+ ions resulted in more intense oxidation of the Mg surface and growth of the oxide layer with a higher active surface area. Cell culture experiments demonstrated appropriate cell adhesion to all investigated coatings with a significantly better proliferation rate for the samples treated in Ca(OH)2-containing electrolyte. In contrast, NaOH-based electrolyte provided more relevant antibacterial effects but did not support cell proliferation. In conclusion, it should be noted that PEO of Mg alloy in silicate baths containing Ca(OH)2 provided the formation of stable biocompatible oxide coatings that could be used in the development of commercial degradable implants.


Assuntos
Eletrólise , Magnésio/farmacologia , Gases em Plasma/química , Silicatos/química , Antibacterianos/farmacologia , Líquidos Corporais/química , Cálcio/análise , Linhagem Celular Tumoral , Sobrevivência Celular , Materiais Revestidos Biocompatíveis/farmacologia , Eletrodos , Humanos , Luminescência , Testes de Sensibilidade Microbiana , Oxirredução , Fósforo/análise , Soluções , Espectrometria por Raios X , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
3.
Mater Sci Eng C Mater Biol Appl ; 121: 111870, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579496

RESUMO

Triply periodic minimal surfaces (TPMS) are known for their advanced mechanical properties and are wrinkle-free with a smooth local topology. These surfaces provide suitable conditions for cell attachment and proliferation. In this study, the in vitro osteoinductive and antibacterial properties of scaffolds with different minimal pore diameters and architectures were investigated. For the first time, scaffolds with TPMS architecture were treated electrochemically by plasma electrolytic oxidation (PEO) with and without silver nanoparticles (AgNPs) to enhance the surface bioactivity. It was found that the scaffold architecture had a greater impact on the osteoblast cell activity than the pore size. Through control of the architecture type, the collagen production by osteoblast cells increased by 18.9% and by 43.0% in the case of additional surface PEO bioactivation. The manufactured scaffolds demonstrated an extremely low quasi-elastic modulus (comparable with trabecular and cortical bone), which was 5-10 times lower than that of bulk titanium (6.4-11.4 GPa vs 100-105 GPa). The AgNPs provided antibacterial properties against both gram-positive and gram-negative bacteria and had no significant impact on the osteoblast cell growth. Complex experimental results show the in vitro effectiveness of the PEO-modified TPMS architecture, which could positively impact the clinical applications of porous bioactive implants.


Assuntos
Nanopartículas Metálicas , Titânio , Ligas , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Porosidade , Prata/farmacologia , Alicerces Teciduais , Titânio/farmacologia
4.
Mater Sci Eng C Mater Biol Appl ; 119: 111607, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321651

RESUMO

Plasma Electrolytic Oxidation (PEO) is as a promising technique to modify metal surfaces by application of oxide ceramic coatings with appropriate physical, chemical and biological characteristics. Therefore, objective of this research was to find the simplest settings, yet able to produce relevant bioactive implant surfaces layers on Ti implants by means of PEO. We show that an electrolyte containing potassium dihydrogen phosphate as a source of P and either calcium hydroxide or calcium formate as a source of Ca in combination with a chelating agent, ethylenediamine tetraacetic acid (EDTA), is suitable for PEO to deliver coatings with desired properties. We determined surface morphology, roughness, wettability, chemical and phase composition of titanium after the PEO process. To investigate biocompatibility and bacterial properties of the PEO oxide coatings we used microbial and cell culture tests. The electrolyte based on Ca(OH)2 and EDTA promotes active crystallization of apatites after PEO processing of the Ti implants. The PEO layers can increase electrochemical corrosion resistance. The PEO can be potentially used for development of bioactive surfaces with increased support of eukaryotic cells while inhibiting attachment and growth of bacteria without use of antibacterial agents.


Assuntos
Implantes Dentários , Titânio , Cálcio , Cerâmica/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Oxirredução , Fósforo , Propriedades de Superfície , Titânio/farmacologia
5.
Nanomaterials (Basel) ; 10(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266240

RESUMO

In a present paper, we demonstrate novel approach to form ceramic coatings with incorporated ZnO nanoparticles (NPs) on low modulus TiZrNb alloy with enhanced biocompatibility and antibacterial parameters. Plasma Electrolytic Oxidation (PEO) was used to integrate ZnO nanoparticles (average size 12-27 nm), mixed with Ca(H2PO2)2 aqueous solution into low modulus TiZrNb alloy surface. The TiZrNb alloys with integrated ZnO NPs successfully showed higher surface porosity and contact angle. XPS investigations showed presence of Ca ions and absence of phosphate ions in the PEO modified layer, what explains higher values of contact angle. Cell culture experiment (U2OS type) confirmed that the surface of as formed oxide-ZnO NPs demonstrated hydrophobic properties, what can affect primary cell attachment. Further investigations showed that Ca ions in the PEO coating stimulated proliferative activity of attached cells, resulting in competitive adhesion between cells and bacteria in clinical situation. Thus, high contact angle and integrated ZnO NPs prevent bacterial adhesion and considerably enhance the antibacterial property of TiZrNb alloys. A new anodic oxide coating with ZnO NPs could be successfully used for modification of low modulus alloys to decrease post-implantation complications.

6.
Materials (Basel) ; 13(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008012

RESUMO

Despite the high biocompatibility and clinical effectiveness of Ti-based implants, surface functionalization (with complex osteointegrative/antibacterial strategies) is still required. To enhance the dental implant surface and to provide additional osteoinductive and antibacterial properties, plasma electrolytic oxidation of a pure Ti was performed using a nitrilotriacetic acid (NTA)-based Ag nanoparticles (AgNP)-loaded calcium-phosphate solution. Chemical and structural properties of the surface-modified titanium were assessed using scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) and contact angle measurement. A bacterial adhesion test and cell culture biocompatibility with collagen production were performed to evaluate biological effectiveness of the Ti after the plasma electrolytic process. The NTA-based calcium-phosphate solution with Ag nanoparticles (AgNPs) can provide formation of a thick, porous plasma electrolytic oxidation (PEO) layer enriched in silver oxide. Voltage elevation leads to increased porosity and a hydrophilic nature of the newly formed ceramic coating. The silver-enriched PEO layer exhibits an effective antibacterial effect with high biocompatibility and increased collagen production that could be an effective complex strategy for dental and orthopedic implant development.

7.
Materials (Basel) ; 13(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899716

RESUMO

High strength, excellent corrosion resistance, high biocompatibility, osseointegration ability, and low bacteria adhesion are critical properties of metal implants. Additionally, the implant surface plays a critical role as the cell and bacteria host, and the development of a simultaneously antibacterial and biocompatible implant is still a crucial challenge. Copper nanoparticles (CuNPs) could be a promising alternative to silver in antibacterial surface engineering due to low cell toxicity. In our study, we assessed the biocompatibility and antibacterial properties of a PEO (plasma electrolytic oxidation) coating incorporated with CuNPs (Cu nanoparticles). The structural and chemical parameters of the CuNP and PEO coating were studied with TEM/SEM (Transmission Electron Microscopy/Scanning Electron Microscopy), EDX (Energy-Dispersive X-ray Dpectroscopy), and XRD (X-ray Diffraction) methods. Cell toxicity and bacteria adhesion tests were used to prove the surface safety and antibacterial properties. We can conclude that PEO on a ZrNb alloy in Ca-P solution with CuNPs formed a stable ceramic layer incorporated with Cu nanoparticles. The new surface provided better osteoblast adhesion in all time-points compared with the nontreated metal and showed medium grade antibacterial activities. PEO at 450 V provided better antibacterial properties that are recommended for further investigation.

8.
Materials (Basel) ; 12(22)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766225

RESUMO

Plasma electrolytic oxidation (PEO) can provide an ideal surface for osteogenic cell attachment and proliferation with further successful osteointegration. However, the same surface is attractive for bacteria due to similar mechanisms of adhesion in prokaryotic and eukaryotic cells. This issue requires the application of additional surface treatments for effective prevention of postoperative infectious complications. In the present work, ZrNb alloy was treated in a Ca-P solution with Ag nanoparticles (AgNPs) for the development of a new oxide layer that hosted osteogenic cells and prevented bacterial adhesion. For the PEO, 0.5 M Ca(H2PO2)2 solution with 264 mg L-1 of round-shaped AgNPs was used. Scanning electron microscopy with energy-dispersive x-ray and x-ray photoelectron spectroscopy were used for morphology and chemical analysis of the obtained samples; the SBF immersion test, bacteria adhesion test, and osteoblast cell culture were used for biological investigation. PEO in a Ca-P bath with AgNPs provides the formation of a mesoporous oxide layer that supports osteoblast cell adhesion and proliferation. Additionally, the obtained surface with incorporated Ag prevents bacterial adhesion in the first 6 h after immersion in a pathogen suspension, which can be an effective approach to prevent infectious complications after implantation.

9.
Nanomedicine ; 21: 102036, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31228604

RESUMO

In this paper, the effect of femtosecond laser nanotexturing of surfaces of Ti6Al4V and Zr implants on their biological compatibility is presented and discussed. Highly regular and homogeneous nanostructures with sub-micrometer period were imprinted on implant surfaces. Surfaces were morphologically and chemically investigated by SEM and XPS. HDFa cell lines were used for toxicity and cell viability tests, and subcutaneous implantation was applied to characterize tissue response. HDFa proliferation and in vivo experiments evidenced the strong influence of the surface topography compared to the effect of the surface elemental composition (metal or alloy). The effect of protein adsorption from blood plasma on cell proliferation is also discussed.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Osseointegração/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Próteses e Implantes , Ligas , Humanos , Lasers , Nanoestruturas/efeitos adversos , Nanoestruturas/química , Osteoblastos/efeitos dos fármacos , Propriedades de Superfície/efeitos dos fármacos , Titânio/farmacologia , Zircônio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...